Dubna1mHBC he4p8

From MukeWiki

Ožiarenie 1m HBC zväzkami jadier 4He pri hybnosti 8,6 GeV/c

 DODAT POPIS STUKTURY DST PRE FULL A MINI FORMAT


Expozície číslo: 40, 41 hybnosť zväzku 4He 8,6 GeV/c.Formaty DST plný (FULL) format a MINI format.

Vysvetlenie rozdielu medzi hypotezou a kanalom reakcie

Hypoteza pod danym cislom, ako je uvedena v zozname, moze zahrnut — v dosledku zakona zachovania elektrickeho naboja a baryonoveho cisla — niekolko kanalov reakcie :

  1. kanal bez neutralnej castice (4C-, 3C-, 2C-fit)
  2. kanal s 1 (jednou) neutralnou casticou (1C-fit)
  3. kanal s 2 (dvoma) a viac neutralnymi casticami (0C-fit tiez nazyvany ako NOFIT).

Pripad (event) moze obsahovat maximalne 2 (dve) hypotezy.

Plný format (FULL) binárny file

Tabuľka expozicií
File Počet prípadov Expozícia
he8p2p4.dvo 13766 40, 41
he8p3p5.dvo 13185 40, 41
he8pnfit.dvo 11761 40, 41
Total 38712 all


Štruktúra zápisu

  • Nbytes, Nwords, b[0], b[1], …, b[Nwords-1], Nbytes,

kde

  • Nbytes je štvorbyteový integer a Nbytes = 4 * (Nwords + 1) dlžka zápisu v štvorbyteových slovách, samotné slová Nbytes sa do dl´žky nezapočítavajú,
  • Nwords je štvorbyteový integer a vyjadruje dlžku poľa
  • b[0], b[1], … b[Nwords-1], samotné slovo Nwords sa do dl´žky nezapočítavá,
  • b[0], b[1], … b[Nwords-1] sú štvorbyteový integer alebo float,
    • b[0], b[1] sú integer (pre lab Dubna, ostatné float)
    • b[2], … b[Nwords-1] sú float

Čítanie: read Nbytes, Nwords ; read b[0], b[1], …, b[Nwords-1] ; read Nbytes

Podrobný popis štruktúry neskoršie.

Dĺžka hlavičky = 28; [0], …, [27]. Začiatok oblasti dráh = @ [29], length = 20/track, počet dráh = (SCANTOP/100 + 2)

Výsledky

Niektoré anomálie v NOFIT hypotézach:

  • expozície 10 a 11 asi v polovine prípadov, inač ako má byť, spravna hodnota 40, 41 vysvetlenie bude neskorsie
  • pre NOFIT cisla hypotez nie su zaporne
  • pre NOFIT hypotezy ND nie je nulový 10332 hypo, NEPOUŽIŤ ND
  • χ2 a PROB sú nenulové 765 hypo, pôvod neviem
  • HYPO weight (W1 a W2) je nulový u 6239 hypo, NEPOUŽIŤ ich!
  • Hmota neutralneho systemu je nulova v NOFIT hypotezach
  • Tieto anomálie sú prítomné v každom LAB = 1, 2, 6
  • Messy (chaotické) prípady:
    • 2 hypotézy z nich jedna ma nulové číslo hypo (4 prípady) môže ísť aj o fit nofit konkurenciu? Track region vyzerá normálne.
    • 1 hypotéza hlavička hytpotézy (info) sú samé nuly (10 prípadov)
    • vylúčiť ich z analýzy ?
  • POUŽíVAŤ iba váhu prípadu [9] a počet hypo [8], kde striktne plati [9] = 1/[8], vahy u hypotez [18] a [27] su nepochopitelne
  • FITNOFIT flag je OK, na testovanie POUŽíVAŤ výhradne FITNOFIT flag

Anomálie prítomné vo všetkých hypotézach

  • π- mezon má KLADNÚ hmotnosť !!!!! ????, mal by mať zápornú, bude asi vždy posledná nabitá častica
  • Oblasť dráh obsahuje 20 slov, z nich 18 je užitočných, pre primarky PY=0 a PZ=0, posledné užitočné slovo je dĺžka dráhy (u primárky sa dobre identifikuje je záporna a má niekoľko desiatok cm). Slovo [18] a [19] neobsahuje vyuzitelnu informaciu. Boli dodane, aby oblast nasledujucej drahy zacal od okruhleho cisla.
  • Za kazdou hypotezou a keď sú dve tak aj medzi nimi idú float čisla. Zmysel je, aby track region druhej hypotezy zacal od okruhleho cisla. To už vidieť aj z tabuľky krokov - vzdialenost medzi prvou a druhou hypotezou v zavislosti od poctu nabitych sekundarnych castic - je väčšia ako (Ntop+2) * trackregionlength:
//               ?  ?  2pr  3pr  4pr  5pr  6pr  7pr 
 int DELTA[] = { 0, 0, 100, 120, 160, 210, 270, 360};


  • Z suradnica vertexu (-30, -9) cm OK a (0, 2) cm shifted beam -- Fig. 1., Lab vs VZ ==> vsetko posunutie je v Lab=6 -- Fig. 2.
  • Hybnosti primarky su v ramci chyb rovnake pre Lab =1 , 2, 6 .
  • Porovnal som fitted hybnost beam a measured p, λ a φ beam a secondaries v chamber systeme po laboratoriach - vizualne nevidiet rozdiel. Nechapem rozdiel v suradniciach vertexu :
    • vertex je corresponding point,
    • pozicia vertexu je upresnena minimalizaciou objemu, vytvoreneho pretinanim meranych velicin drah.
  • Napriek tejto skutocnosti, mozeme data z Lab 6 zahrnut a pouzit MINI DST, pretoze:
    • Vypis po 10 eventoch pre 60040 a 60041 ukazuje, ze VZ: je bud 0.5 alebo 1.
    • Z histogramu Lab(y) vs Z Verte(x) pre Lab=6 -- Fig. 2. sa da vycitat, ze:
      • VZ=0.5 pre 443 evts a
      • VZ=1 pre 4493 evts,
    • co sa zhoduje s celkovym poctom eventov 4936 pre Lab=6 -- Fig. 3..
    • Cely problem bol vytvoreny umelo. Miesto VZ sa zapisal WEIGHT. Histo VZ vs WEIGHT pre Lab=6 -- Fig. 3. -- ukazuje obsah binu (WEIGHT=0.5, VZ=0.5) = 443 a binu (WEIGHT=1, VZ=1) = 4493 ostatne biny su prazdne.
Fig. 1. Main vertex Z distribution -- 4Hep at 8.6 GeV/c
Fig. 2. Lab index vs main vertex Z -- 4Hep at 8.6 GeV/c
Fig. 3. Main vertex Z vs Weight for Lab index=6 -- 4Hep at 8.6 GeV/c


Dodanie grind-checking kriterii na akceptovanie/zamietnutie hypotezy do analyzacneho macra (obecne pre celu DST):

  • pravdepodobnost a ND je v hlavicke hypotezy su jednoducho spojene, vidiet z ND vs prob, ze toto kriterium (p > 0.001 pre 4,3 C a p> 0.05 pre 1C) nie je vzdy dodrzovane
  • MMS je tiez v hlavicke, slabo zavisi od cisla hypotezy, da sa dodat, ale moze byt komplikovanejsie
  • modul hybnosti castic treba vypocitat a preverit pre kazdu sekundarnu casticu
  • a vsetky previerky treba robit v cykle cez pocet hypotez pred plnenim histogramu
  • testovat konkretny vysledny kanal reakcie na dodrziavanie grind-checking kriterii je pohodlnejsie, preto to robit obecne NEidem

Zoznam filmov pre exp 40 a 41 z FULL DST

Exp 10
          52   53   54   55   56   57
60    61   62   63
      71
Exp 11
100                      105
110       112       114  115  116  117
120
          122  123  124  125  126  127
130  131  132  133  134  135  136  137
140  141       143       145  146 
          152       154       156  157 
160       162  163  164  165
170            173            175
          202
210  211  212  213            215
220  221  222            224  225       227
               243                 246  267
               273                 276  277
300  301  302  303  304  305  306  307          310
     311       313  314
Exp 40
                 13  14  15  16
                 23  24  25  26
310
320                 324
360
410
Exp 41
           52   53   54   55   56   57
60    61   62   63
      71
100                      105
110  111  112       114  115  116  117
120  121  122  123  124  125  126  127      130
     131  132  133  134  135  136  137
140  141       143  144  145  146  147
150  151  152       154  155  156  157
160  161  162  163  164  165  166  167
170  171  172  173       175
          202
210  211  212  213       215       217     
220  221  222  223  224  225  227
                         235  236  237  
240  241  242  243  244  245  246  247  250
251  267  273  276  277  
300 301  302  303  304  305  306  307  310
311  313  314

Nie vsetky prekryvajuce su vyznacene.
Ide o to, ze cast NOFIT hypotez v Lab=1  ma exp 10 resp 11.
Tabulka FIT NOFIT hypotez po expoziciach
Exposition NOFIT FIT
40 1020 23570.5
41 4825.5 2993
10 660.25 0
11 4730.5 0
Tabulka FIT NOFIT flag po Laboratoriach
Lab index NOFIT FIT
1 6327.25 16192.5
2 3536 7029.5
6 1373 3341.5
Tabulka FIT NOFIT flag po Laboratoriach pre expo 40&41
Lab index NOFIT FIT
1 936.5 16192.5
2 3536 7029.5
6 1373 3341.5
 660.25(Nofit exp10) + 4730.5(Nofit exp11) + 936.5(Nofit 40+41 Lab=1)  =  6327.25(Lab=1 NOFIT)

Redukovaný format (MINI, MIKRO) binárny file

Redukovaný formát štatistika
File Number of hypo Exposition
he4prng2.dvo 14483 40, 41
he4prng3.dvo 20692 40, 41
he4prng4.dvo 1336 40, 41
he4prng5.dvo 2174 40, 41
Total 38685 all

Štruktúra zápisu

  • Nbytes, Nwords, b[0], b[1], …, b[Nwords-1], Nbytes,

kde

  • Nbytes je štvorbyteový integer a Nbytes = 4 * (Nwords + 1) dlžka zápisu v štvorbyteových slovách, samotné slová Nbytes sa do dl´žky nezapočítavajú,
  • Nwords je štvorbyteový integer a vyjadruje dlžku poľa, b[0], b[1], … b[Nwords-1], samotné slovo Nwords sa do dl´žky nezapočítavá,
  • b[0], b[1] sú integer (pre lab Dubna, pre ostatne float )
  • b[2], … b[Nwords-1] sú float

Čítanie: read Nbytes, Nwords ; read b[0], b[1], …, b[Nwords-1] ; read Nbytes

  • Podrobný popis štruktúry neskoršie.
  • Dĺžka hlavičky = 5 ( 0, …, 4)
  • Začiatok oblasti dráh = @ [5], length = 6/track,
  • scanning topology nie je na DST, počet dráh sa dá určiť takto: (Nwords – dĺžkahlavičky)/length/počethypotéz
  • Cislovanie NOFIT hypotez je OK, < -100.5

Výsledky

Anomálie prítomné vo všetkých hypotézach
  • π- mezon má KLADNÚ hmotnost, mal by mať zápornú, bude asi vždy posledná nabitá častica, pred neutralnou.

Zavery pre DST

  • π- mezonu dat ZAPORNU hmotnost
  • v NOFIT :
    • zanulovat ND, CHISQ, PROBABILITY
    • opravit cisla NOFIT hypo na < -100.5 (hlavne FULL DST)
  • Lab=6 Z vertex = 0.5 resp 1 mozna sa da opravit (vypocitat), ale da sa s tym zit ako je
  • rada pocas analyzy preverit grind checking kriteria pre hybnost a pravdepodobnost

Grind checking kriteria [math]\displaystyle{ ^{4}Hep }[/math] pri 8.6 GeV/c

  1. Pravdepodobnost P:
    • 1C fit hypotez P > 0.05
    • 2C fit hypotez P > 0.02
    • 3C fit hypotez P > 0.005
    • 4C fit hypotez P > 0.001
  2. Moduly laboratornych hybnosti p sekundarnych nabitych castic:
    • [math]\displaystyle{ nabite \hspace{0.2cm} \pi \hspace{0.2cm} mezony \hspace{0.2cm} p_{\pi} \lt 3.0 GeV/c }[/math]
    • [math]\displaystyle{ proton \hspace{0.2cm} p_{p} \lt 5.2 GeV/c }[/math]
    • [math]\displaystyle{ deuteron \hspace{0.2cm} p_{d} \lt 5.2 GeV/c }[/math]
    • [math]\displaystyle{ triton \hspace{0.2cm} p_{t} \gt 5.2 GeV/c }[/math]
    • [math]\displaystyle{ ^{3}He \hspace{0.2cm} p_{^{3}He} \lt 7.2 GeV/c }[/math]
    • [math]\displaystyle{ ^{4}He \hspace{0.2cm} p_{^{4}He} \gt 7.2 GeV/c }[/math]
  3. Kvadrat chybajucej hmotnosti pre 1C fit hypotez [math]\displaystyle{ MM^{2} }[/math]:
    • s [math]\displaystyle{ \pi^{0} mezonom -0.2 \lt MM^{2}_{\pi^{0}} \lt 0.16 GeV^{2} }[/math]
    • s neutronom [math]\displaystyle{ 0.4 \lt MM^{2}_{n} \lt 1.2 GeV^{2} }[/math]
  4. Kvadrat chybajucej hmotnosti pre NOFIT hypotez [math]\displaystyle{ MM^{2} }[/math]:
    • s [math]\displaystyle{ X^{0}= k \pi^{0}, pre \hspace{0.2cm}k \gt 1, MM^{2}_{X^{0}} \gt 0.1 GeV^{2} }[/math]
    • s [math]\displaystyle{ X^{0}= k \hspace{0.1cm} neutronov \hspace{0.2cm}(moze\hspace{0.1cm} obsahovat \hspace{0.1cm}\pi^{0}\hspace{0.1cm} mezon/y): }[/math]
      • [math]\displaystyle{ pre \hspace{0.2cm}k = 1, MM^{2}_{X^{0}} \gt 1.17 GeV^{2} }[/math]
      • [math]\displaystyle{ pre \hspace{0.2cm}k = 2, MM^{2}_{X^{0}} \gt 3.53 GeV^{2} }[/math]
      • [math]\displaystyle{ pre \hspace{0.2cm}k = 3, MM^{2}_{X^{0}} \gt 7.94 GeV^{2} }[/math]
      • [math]\displaystyle{ pre \hspace{0.2cm}k = 4, MM^{2}_{X^{0}} \gt 14.12 GeV^{2} }[/math]


  • Pre FULL DST mozno pouzit vsetky 4 kriteria, ale pre bezne analyzy stacia 1,2,3.
  • MINI DST umoznuje pouzit kriterium 2. Chybajuce hmotnosti sa daju dopocitat.

Navrh kodovania vystupnych kanalov reakcii iba pre exp. 40 & 41

  • Pre kanaly bez neutralnej alebo s jednou neutralnou casticou :
    • Pocet nabitych sekundarnych castic * 1000 + pocet neutralnych castic *100 + poradove cislo skupiny vystupneho kanalu ako je to v popise struktury DST.
  • Pre kanaly obsahujuce dve a viac neutralnych castic : –(Pocet nabitych sekundarnych castic * 1000 + pocet neutralnych castic *100 + poradove cislo skupiny vystupneho kanalu), ako je to v popise struktury DST.Pre tieto kanaly neutralny system oznacujeme [math]\displaystyle{ X^{0} }[/math] a podla zakona zachovania baryonoveho cisla a energie reakcie moze obsahovat bud :
    • dva a viac [math]\displaystyle{ \pi^{0} }[/math] alebo
    • neutron a niekolko [math]\displaystyle{ \pi^{0} }[/math] alebo
    • dva neutrony alebo
    • dva neutron a niekolko [math]\displaystyle{ \pi^{0} }[/math] alebo
    • tri neutrony alebo
    • tri neutrony a niekolko [math]\displaystyle{ \pi^{0} }[/math].


Navrh kodovania hypotez pre expozicie 4Hep pri 8.6 GeV/c exp. 40 & 41 (prevzata z exp 42&43 4Hep pri 13.5 GeV/c)
No neutral One neutral Two or more neutrals
Kanal reakcie Kod Kanal reakcie Kod Kanal reakcie [math]\displaystyle{ X^0 }[/math] Kod
[math]\displaystyle{ ^4Hep \rightarrow {^4He}p }[/math] 2001 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^{0} }[/math] 2101 [math]\displaystyle{ ^4Hep \rightarrow {^4He}pX^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -2101
[math]\displaystyle{ ^4Hep \rightarrow {^3He}d }[/math] 2002 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^{0} }[/math] 2102 [math]\displaystyle{ ^4Hep \rightarrow {^3He}dX^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -2102
[math]\displaystyle{ ^4Hep \rightarrow {^3He}pn }[/math] 2103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pX^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -2103
[math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+n }[/math] 2104 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -2104
[math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -2105
[math]\displaystyle{ ^4Hep \rightarrow tpp }[/math] 3001 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^{0} }[/math] 3101 [math]\displaystyle{ ^4Hep \rightarrow tppX^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -3101
[math]\displaystyle{ ^4Hep \rightarrow ddp }[/math] 3002 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^{0} }[/math] 3102 [math]\displaystyle{ ^4Hep \rightarrow ddpX^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -3102
[math]\displaystyle{ ^4Hep \rightarrow td\pi^+ }[/math] 3003 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^{0} }[/math] 3103 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -3103
[math]\displaystyle{ ^4Hep \rightarrow dppn }[/math] 3104 [math]\displaystyle{ ^4Hep \rightarrow dppX^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -3104
[math]\displaystyle{ ^4Hep \rightarrow tp\pi^+n }[/math] 3105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -3105
[math]\displaystyle{ ^4Hep \rightarrow dd\pi^+n }[/math] 3106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -3106
[math]\displaystyle{ ^4Hep \rightarrow pppX^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -3107
[math]\displaystyle{ ^4Hep \rightarrow t\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -3108
[math]\displaystyle{ ^4Hep \rightarrow dp\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -3109
[math]\displaystyle{ ^4Hep \rightarrow d\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=3n+k\pi^0, k\ge0 }[/math] -3110
[math]\displaystyle{ ^4Hep \rightarrow pp\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=3n+k\pi^0, k\ge0 }[/math] -3111
[math]\displaystyle{ ^4Hep \rightarrow p\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=4n+k\pi^0, k\ge0 }[/math] -3112
[math]\displaystyle{ ^4Hep \rightarrow \pi^+\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=5n+k\pi^0, k\ge0 }[/math] -3113
[math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^- }[/math] 4001 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-\pi^{0} }[/math] 4101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -4101
[math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^- }[/math] 4002 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-\pi^{0} }[/math] 4102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -4102
[math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^- }[/math] 4003 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^-\pi^{0} }[/math] 4103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -4103
[math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-n }[/math] 4104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -4104
[math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^-n }[/math] 4105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -4105
[math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -4106
[math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^- }[/math] 5001 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-\pi^{0} }[/math] 5101 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -5101
[math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^- }[/math] 5002 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-\pi^{0} }[/math] 5102 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -5102
[math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^- }[/math] 5003 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-\pi^{0} }[/math] 5103 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -5103
[math]\displaystyle{ ^4Hep \rightarrow dppp\pi^- }[/math] 5004 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-\pi^{0} }[/math] 5104 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -5104
[math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-n }[/math] 5105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -5105
[math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-n }[/math] 5106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -5106
[math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-n }[/math] 5107 [math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -5107
[math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-n }[/math] 5108 [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -5108
[math]\displaystyle{ ^4Hep \rightarrow dp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -5109
[math]\displaystyle{ ^4Hep \rightarrow ppp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -5110
[math]\displaystyle{ ^4Hep \rightarrow pp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=3n+k\pi^0, k\ge0 }[/math] -5111
[math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^- }[/math] 6001 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-\pi^{0} }[/math] 6101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -6101
[math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^- }[/math] 6002 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math] 6102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -6102
[math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^- }[/math] 6003 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math] 6103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -6103
[math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-n }[/math] 6104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -6104
[math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-n }[/math] 6105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -6105


Cervena farba znamena narusenie poradia hypotez (=kanalov reakcie) voci pisomnemu zoznamu.

interna tab

Poznámka k 6-lúčovým 4Hep pri 8.6 GeV/c exp. 40 & 41, pre interne pouzivanie (tabulka prevzata z exp. 42 & 43 4Hep pri 13.5 GeV/c)
Por. HYP od ÷ do Kod reakcie Nove Kanal reakcie
1. 1 ÷ 12 6001 | 6101 | -6101 1 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-| \pi^{0} | X^{0}, X^{0}= k\pi^{0}, k\ge2 }[/math]
2. 13 ÷ 24 6002 | 6102 | -6102 2 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-| \pi^{0} | X^{0}, X^{0}= k\pi^{0}, k\ge2 }[/math]
3. 125 ÷ 136 6104 | -6104 4 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-| n |X^{0}, X^{0}= n+k\pi^{0}, k\ge1 }[/math]
4. 37 ÷ 48 6003 | 6103 | -6103 3 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-| \pi^{0} | X^{0}, X^{0}= k\pi^{0}, k\ge2 }[/math]
5 149 ÷ 152 6105 | -6105 5 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^{-} | n | X^{0}, X^{0}= n+k\pi^{0}, k\ge1 }[/math]

Prechod ku kodom [math]\displaystyle{ ^{4}Hep }[/math] pri 8.6 GeV/c (exp. 40&41) MINI format

2 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 2 2001 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p }[/math]
101 ≤ NHYP ≤102 2101 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^{0} }[/math]
-102 ≤ NHYP ≤ -101 -2101 [math]\displaystyle{ ^4Hep \rightarrow {^4He}pX^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
3 ≤ NHYP ≤ 4 2002 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d }[/math]
103 ≤ NHYP ≤ 104 2102 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^{0} }[/math]
-104 ≤ NHYP ≤ -103 -2102 [math]\displaystyle{ ^4Hep \rightarrow {^3He}dX^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
105 ≤ NHYP ≤ 106 2103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pn }[/math]
-106 ≤ NHYP ≤ -105 -2103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pX^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
107 ≤ NHYP ≤ 108 2104 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+n }[/math]
-108 ≤ NHYP ≤ -107 -2104 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
-110 ≤ NHYP ≤ -109 -2105 [math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
4 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 3 4001 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^- }[/math]
101 ≤ NHYP ≤ 103 4101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-\pi^{0} }[/math]
-103 ≤ NHYP ≤ -101 -4101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
4 ≤ NHYP ≤ 9 4002 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^- }[/math]
104 ≤ NHYP ≤ 109 4102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-\pi^{0} }[/math]
-109 ≤ NHYP ≤ -104 -4102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
10 ≤ NHYP ≤15 4003 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^- }[/math]
110 ≤ NHYP ≤115 4103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^-\pi^{0} }[/math]
-115 ≤ NHYP ≤ -110 -4103 [math]\displaystyle{ ^4Hep \rightarrow {^4He}d\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
116 ≤ NHYP ≤ 121 4104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-n }[/math]
-121 ≤ NHYP ≤ 116 -4104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
122 ≤ NHYP ≤ 124 4105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^{-}n }[/math]
-124 ≤ NHYP ≤ -122 -4105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^{-}X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
-127 ≤ NHYP ≤ -125 -4106 [math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
3 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 3 3001 [math]\displaystyle{ ^4Hep \rightarrow tpp }[/math]
101 NHYP ≤103 3101 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^{0} }[/math]
-103 NHYP ≤ -101 -3101 [math]\displaystyle{ ^4Hep\rightarrow tppX^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
4 ≤ NHYP ≤ 6 3002 [math]\displaystyle{ ^4Hep \rightarrow ddp }[/math]
104 ≤ NHYP ≤ 106 3102 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^{0} }[/math]
-106 ≤ NHYP ≤ -104 -3102 [math]\displaystyle{ ^4Hep \rightarrow ddpX^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
7 ≤ NHYP ≤ 12 3003 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+ }[/math]
107≤ NHYP ≤ 112 3103 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^{0} }[/math]
-112 ≤ NHYP ≤ -107 -3103 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
113 ≤ NHYP ≤ 115 3104 [math]\displaystyle{ ^4Hep \rightarrow dppn }[/math]
-115 ≤ NHYP ≤ -113 -3104 [math]\displaystyle{ ^4Hep \rightarrow dppX^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
116 ≤ NHYP ≤ 121 3105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+n }[/math]
-121 ≤ NHYP ≤ -116 -3105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
122 ≤ NHYP ≤ 124 3106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+n }[/math]
-124 ≤ NHYP ≤ -122 -3106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
NHYP = -125 -3107 [math]\displaystyle{ ^4Hep \rightarrow pppX^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-128 ≤ NHYP ≤ -126 -3108 [math]\displaystyle{ ^4Hep \rightarrow t\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-134 ≤ NHYP ≤ -129 -3109 [math]\displaystyle{ ^4Hep \rightarrow dp\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-137 ≤ NHYP ≤ -135 -3110 [math]\displaystyle{ ^4Hep \rightarrow d\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=3n+k\pi^{0}, k\ge0 }[/math]
-140 ≤ NHYP ≤ -138 -3111 [math]\displaystyle{ ^4Hep \rightarrow pp\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=3n+k\pi^{0}, k\ge0 }[/math]
-143 ≤ NHYP ≤ -141 -3112 [math]\displaystyle{ ^4Hep \rightarrow p\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=4n+k\pi^{0}, k\ge0 }[/math]
NHYP = -144 -3113 [math]\displaystyle{ ^4Hep \rightarrow \pi^+\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=5n+k\pi^{0}, k\ge0 }[/math]


5 prongs
NHYP KOD Kanal reakcie
41 ≤ NHYP ≤ 52 5001 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^- }[/math]
141 ≤ NHYP ≤ 152 5101 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-\pi^{0} }[/math]
-152 ≤ NHYP ≤ -141 -5101 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
1 ≤ NHYP ≤ 12 5002 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^- }[/math]
101 ≤ NHYP ≤ 112 5102 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-\pi^{0} }[/math]
-112 ≤ NHYP ≤ -101 -5102 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-X^{0} }[/math]
13 ≤ NHYP ≤ 24 5003 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^- }[/math]
113 ≤ NHYP ≤124 5103 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-\pi^{0} }[/math]
-124 ≤ NHYP ≤ -113 -5103 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
37 ≤ NHYP ≤ 40 5004 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^- }[/math]
137 ≤ NHYP ≤ 140 5104 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-\pi^{0} }[/math]
-140 ≤ NHYP ≤ -137 -5104 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
176 ≤ NHYP ≤ 187 5105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-n }[/math]
-187 ≤ NHYP ≤-176 -5105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
188 ≤ NHYP ≤ 193 5106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-n }[/math]
-193 ≤ NHYP ≤ -188 -5106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
125 ≤ NHYP ≤ 136 5107 [math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-n }[/math]
-136 ≤ NHYP ≤ -125 -5107 [math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
NHYP = 153 5108 [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-n }[/math]
NHYP = -153 -5108 [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
-165 ≤ NHYP ≤ -154 -5109 [math]\displaystyle{ ^4Hep \rightarrow dp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-175 ≤ NHYP ≤ -172 -5110 [math]\displaystyle{ ^4Hep \rightarrow ppp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-171 ≤ NHYP ≤ -166 -5111 [math]\displaystyle{ ^4Hep \rightarrow pp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=3n+k\pi^{0}, k\ge0 }[/math]
-197 ≤ NHYP ≤ -194 -5112 [math]\displaystyle{ ^4Hep \rightarrow t\pi^+\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]

Doplnenie k 5 lucovym kanalom: farebne vyznacene kanaly reakcie 5 lucovych (predosla a nasledujuca tabulka), celkom 6 (sest) hypotez, nie su uvedene v MINI DST zozname hypotez (exp 40&41), su ale v povodnom plnom zozname (iba pisomne). Plny zoznam (exp 40&41) obsahuje tri hypotezy (kanaly) reakcie naviac, aj v porovnani s plnym zoznamom hypotez pre exp. 42&43 4Hep pri 13.5 GeV/c, s nasledujucimi cislami:

Nezaradene hypotezy/kanaly do DST 5 lucove
NHYP Kanal reakcie
94 ÷ 97 [math]\displaystyle{ ^4Hep \rightarrow t\pi^+\pi^+\pi^+\pi^-X^{0}, X^0=2n+k\pi^{0}, k\ge0 }[/math]
98 ÷ 101 [math]\displaystyle{ ^4Hep \rightarrow d\pi^+\pi^+\pi^+\pi^-X^{0}, X^0=3n+k\pi^{0}, k\ge0 }[/math]
102 ÷ 106 [math]\displaystyle{ ^4Hep \rightarrow p\pi^+\pi^+\pi^+\pi^-X^{0}, X^0=4n+k\pi^{0}, k\ge0 }[/math]

Na FULL DST sa kanaly s cislami hypotez nad 175 sa nevyskytuju, ako vidiet z rozdelenia hypotez na obrazku Fig. 4.

6 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 12 6001 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^- }[/math]
101 ≤ NHYP ≤ 112 6101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-\pi^{0} }[/math]
-112 ≤ NHYP ≤-101 -6101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
13 ≤ NHYP ≤ 24 6002 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^- }[/math]
113 ≤ NHYP ≤ 124 6102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math]
-124 ≤ NHYP ≤ -113 -6102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
37 ≤ NHYP ≤ 48 6003 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^- }[/math]
137 ≤ NHYP ≤ 148 6103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math]
-148 ≤ NHYP ≤ -137 -6103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
125 ≤ NHYP ≤ 136 6104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-n }[/math]
-136 ≤ NHYP ≤-125 -6104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
149 ≤ NHYP ≤ 152 6105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-n }[/math]
-152 ≤ NHYP ≤ -149 -6105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
Fig. 4. Rozdelenie cisla hypotez ako su na FULL DST -- 4Hep at 8.6 GeV/c