Dubna1mHBC he4p13
Ožiarenie 1m HBC zväzkami jadier 4He pri hybnosti zväzku 13,5 GeV/c
DODAT POPIS STUKTURY DST PRE FULL A MINI FORMAT
Expozície číslo: 42, 43 hybnosť zväzku 4He 13,5 GeV/c.Formaty DST plný (FULL) format a MINI format.
Vysvetlenie rozdielu medzi hypotezou a kanalom reakcie
Hypoteza pod danym cislom, ako je uvedena v zozname, moze zahrnut — v dosledku zakona zachovania elektrickeho naboja a baryonoveho cisla — niekolko kanalov reakcie :
- kanal bez neutralnej castice (4C-, 3C-, 2C-fit)
- kanal s 1 (jednou) neutralnou casticou (1C-fit)
- kanal s 2 (dvoma) a viac neutralnymi casticami (0C-fit tiez nazyvany ako NOFIT).
Plný format (FULL) binárny file
File | Počet prípadov | Expozícia |
---|---|---|
he13.dvo | 31145 | 42, 43 |
Total | 31145 | all |
Štruktúra zápisu
- Nbytes, Nwords, b[0], b[1], …, b[Nwords-1], Nbytes,
kde
- Nbytes je štvorbyteový integer a Nbytes = 4 * (Nwords + 1) dlžka zápisu v štvorbyteových slovách, samotné slová Nbytes sa do dl´žky nezapočítavajú,
- Nwords je štvorbyteový integer a vyjadruje dlžku poľa
- b[0], b[1], … b[Nwords-1], samotné slovo Nwords sa do dl´žky nezapočítavá,
- b[0], b[1], … b[Nwords-1] sú štvorbyteový
integer alebofloat,
** b[0], b[1] sú integer (pre lab Dubna, ostatné float)
** b[2], … b[Nwords-1] sú float
Čítanie: read Nbytes, Nwords ; read b[0], b[1], …, b[Nwords-1] ; read Nbytes
Podrobný popis štruktúry neskoršie.
Dĺžka hlavičky = 28; [0], …, [27]. Začiatok oblasti dráh = pri [29], length = 20/track, počet dráh = (SCANTOP/100 + 2), posledne slovo je dlzka drahy.
Výsledky
Vylepšenia (voči 8.6 GeV/c):
- Hmotnosť pi- mezónu je ZÁPORNÁ
- NOFIT ND je nulový
- NOFIT prob je nenulová iba pre LAB=2
- LAB = 1, 2, 3, 4, 5, 6
- vertex VX, VY, VZ OK
- prve dve slova su realne (float) obsahuju ROLL*10+meas/order, FRAME*10+order/meas, neviem si zistit kde je meas a kde order
Niektoré anomálie:
- Oblasť dráh obsahuje 20 slov/dráhu, posledné slovo je dĺžka dráhy (u primárky sa dobre identifikuje je záporné a má niekoľko desiatok cm). Slovo 19 a 20 asi budu DELTA SQ. FROM BEAM, DELTA SQ. FROM TARGET.
- Ak sú dve hypotézy, tak aj medzi nimi sú nuly. Za poslednou hypo tento chvost neide. Vzdialenosť medzi oblastmi dráh (ak sú 2 hypo) v zavislosti od poctu sekundarnych nabitych castc, je nasledovna:
// ? ? 2pr 3pr 4pr 5pr 6pr 7pr
int DELTA[] = { 0, 0, 100, 120, 160, 210, 270, 360};
Redukovaný format (MINI, MIKRO) binárny file
File | Number of hypo | Exposition |
---|---|---|
he13p2.dvo | 10153 | 42, 43 |
he13p3.dvo | 13855 | 42, 43 |
he13p4.dvo | 2194 | 42, 43 |
he13p5.dvo | 4671 | 42, 43 |
he13p6.dvo | 55 | 42, 43 |
he13p7.dvo | 213 | 42, 43 |
Total | 31141 | all |
Štruktúra zápisu
- Nbytes, Nwords, b[0], b[1], …, b[Nwords-1], Nbytes,
kde
- Nbytes je štvorbyteový integer a Nbytes = 4 * (Nwords + 1) dlžka zápisu v štvorbyteových slovách, samotné slová Nbytes sa do dl´žky nezapočítavajú,
- Nwords je štvorbyteový integer a vyjadruje dlžku poľa, b[0], b[1], … b[Nwords-1], samotné slovo Nwords sa do dl´žky nezapočítavá,
- b[0], b[1] sú integer (pre lab Dubna, pre ostatne float )
- b[2], … b[Nwords-1] sú float
Čítanie: read Nbytes, Nwords ; read b[0], b[1], …, b[Nwords-1] ; read Nbytes
Podrobný popis štruktúry neskoršie. Začiatok oblasti dráh = @ 5, length = 6/track, scanning topology nie je na DST, počet dráh sa dá určiť takto: (Nwords – dĺžkahlavičky)/length/počethypotéz.
Výsledky
Niektoré anomálie:
- beam py ≠ 0 (54 events), pz ≠ 0 (52 events)for Lab=6
- oblast beam 0<px< 4 (54 events) pre Lab = 6, pre ostatne eventy 11<px<16 pre vsetky lab
FULL DST nevykazuje anomalie v hybnosti zloziek zvazku a obsahuje o 54 eventov menej ako MINI DST. Kde sa nabralo tych 54 anomalnych eventov na MINI DST? Neviem.
Grind checking kriteria [math]\displaystyle{ ^{4}Hep }[/math] pri 13.5 GeV/c
- Pravdepodobnost P:
- 1C fit hypotez P > 0.05
- 2C fit hypotez P > 0.02
- 3C fit hypotez P > 0.005
- 4C fit hypotez P > 0.001
- Moduly laboratornych hybnosti p sekundarnych nabitych castic:
- [math]\displaystyle{ nabite \hspace{0.2cm} \pi \hspace{0.2cm} mezony \hspace{0.2cm} p_{\pi} \lt 2.5 GeV/c }[/math]
- [math]\displaystyle{ proton \hspace{0.2cm} p_{p} \lt 5.5 GeV/c }[/math]
- [math]\displaystyle{ deuteron \hspace{0.2cm} p_{d} \lt 8.7 GeV/c }[/math]
- [math]\displaystyle{ triton \hspace{0.2cm} 8.7 \lt p_{t} \lt 11.9 GeV/c }[/math]
- [math]\displaystyle{ ^{3}He \hspace{0.2cm} p_{^{3}He} \lt 11.9 GeV/c }[/math]
- [math]\displaystyle{ ^{4}He \hspace{0.2cm} p_{^{4}He} \gt 11.9 GeV/c }[/math]
- Kvadrat chybajucej hmotnosti pre 1C fit hypotez [math]\displaystyle{ MM^{2} }[/math]:
- s [math]\displaystyle{ \pi^{0} }[/math] mezonom [math]\displaystyle{ -0.2 \lt MM^{2}_{\pi^{0}} \lt 0.16 GeV^{2} }[/math]
- s neutronom [math]\displaystyle{ 0.4 \lt MM^{2}_{n} \lt 1.2 GeV^{2} }[/math]
- Kvadrat chybajucej hmotnosti s neurcitostou pre NOFIT hypotez [math]\displaystyle{ MM^{2}+3\sigma_{MM^{2}}: }[/math]
- s [math]\displaystyle{ X^{0}= k \pi^{0}, pre \hspace{0.2cm}k \gt 1, MM^{2}+3\sigma_{MM^{2}} \gt 0.1 GeV^{2} }[/math]
- s [math]\displaystyle{ X^{0}= k \hspace{0.1cm} neutronov\hspace{0.2cm}(moze\hspace{0.1cm} obsahovat \hspace{0.1cm}\pi^{0}\hspace{0.1cm} mezon/y): }[/math]
- [math]\displaystyle{ pre \hspace{0.2cm}k = 1, MM^{2}+3\sigma_{MM^{2}} \gt 1.17 GeV^{2} }[/math]
- [math]\displaystyle{ pre \hspace{0.2cm}k = 2, MM^{2}+3\sigma_{MM^{2}} \gt 3.53 GeV^{2} }[/math]
- [math]\displaystyle{ pre \hspace{0.2cm}k = 3, MM^{2}+3\sigma_{MM^{2}} \gt 7.94 GeV^{2} }[/math]
- [math]\displaystyle{ pre \hspace{0.2cm}k = 4, MM^{2}+3\sigma_{MM^{2}} \gt 14.12 GeV^{2} }[/math]
- Pre FULL DST mozno pouzit vsetky 4 kriteria, ale pre bezne analyzy stacia 1,2,3.
- MINI DST umoznuje pouzit kriterium 2. Chybajuce hmotnosti sa daju dopocitat, ale bez neurcitosti.
No neutral | One neutral | Two or more neutrals | ||||
Kanal reakcie | Kod | Kanal reakcie | Kod | Kanal reakcie | [math]\displaystyle{ X^0 }[/math] | Kod |
[math]\displaystyle{ ^4Hep \rightarrow {^4He}p }[/math] | 2001 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^{0} }[/math] | 2101 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}pX^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -2101 |
[math]\displaystyle{ ^4Hep \rightarrow {^3He}d }[/math] | 2002 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^{0} }[/math] | 2102 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}dX^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -2102 |
[math]\displaystyle{ ^4Hep \rightarrow {^3He}pn }[/math] | 2103 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pX^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -2103 | ||
[math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+n }[/math] | 2104 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -2104 | ||
[math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] | -2105 | ||||
[math]\displaystyle{ ^4Hep \rightarrow tpp }[/math] | 3001 | [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^{0} }[/math] | 3101 | [math]\displaystyle{ ^4Hep \rightarrow tppX^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -3101 |
[math]\displaystyle{ ^4Hep \rightarrow ddp }[/math] | 3002 | [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^{0} }[/math] | 3102 | [math]\displaystyle{ ^4Hep \rightarrow ddpX^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -3102 |
[math]\displaystyle{ ^4Hep \rightarrow td\pi^+ }[/math] | 3003 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^{0} }[/math] | 3103 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -3103 |
[math]\displaystyle{ ^4Hep \rightarrow dppn }[/math] | 3104 | [math]\displaystyle{ ^4Hep \rightarrow dppX^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -3104 | ||
[math]\displaystyle{ ^4Hep \rightarrow tp\pi^+n }[/math] | 3105 | [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -3105 | ||
[math]\displaystyle{ ^4Hep \rightarrow dd\pi^+n }[/math] | 3106 | [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -3106 | ||
[math]\displaystyle{ ^4Hep \rightarrow pppX^{0} }[/math] | [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] | -3107 | ||||
[math]\displaystyle{ ^4Hep \rightarrow t\pi^+\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] | -3108 | ||||
[math]\displaystyle{ ^4Hep \rightarrow dp\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] | -3109 | ||||
[math]\displaystyle{ ^4Hep \rightarrow d\pi^+\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=3n+k\pi^0, k\ge0 }[/math] | -3110 | ||||
[math]\displaystyle{ ^4Hep \rightarrow pp\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=3n+k\pi^0, k\ge0 }[/math] | -3111 | ||||
[math]\displaystyle{ ^4Hep \rightarrow p\pi^+\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=4n+k\pi^0, k\ge0 }[/math] | -3112 | ||||
[math]\displaystyle{ ^4Hep \rightarrow \pi^+\pi^+\pi^+X^{0} }[/math] | [math]\displaystyle{ X^{0}=5n+k\pi^0, k\ge0 }[/math] | -3113 | ||||
[math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^- }[/math] | 4001 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-\pi^{0} }[/math] | 4101 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -4101 |
[math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^- }[/math] | 4002 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-\pi^{0} }[/math] | 4102 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -4102 |
[math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^- }[/math] | 4003 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^-\pi^{0} }[/math] | 4103 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -4103 |
[math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-n }[/math] | 4104 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -4104 | ||
[math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^-n }[/math] | 4105 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -4105 | ||
[math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] | -4106 | ||||
[math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^- }[/math] | 5001 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-\pi^{0} }[/math] | 5101 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -5101 |
[math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^- }[/math] | 5002 | [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-\pi^{0} }[/math] | 5102 | [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -5102 |
[math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^- }[/math] | 5003 | [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-\pi^{0} }[/math] | 5103 | [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -5103 |
[math]\displaystyle{ ^4Hep \rightarrow dppp\pi^- }[/math] | 5004 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-\pi^{0} }[/math] | 5104 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -5104 |
[math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-n }[/math] | 5105 | [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -5105 | ||
[math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-n }[/math] | 5106 | [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -5106 | ||
[math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-n }[/math] | 5107 | [math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -5107 | ||
[math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-n }[/math] | 5108 | [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -5108 | ||
[math]\displaystyle{ ^4Hep \rightarrow dp\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] | -5109 | ||||
[math]\displaystyle{ ^4Hep \rightarrow ppp\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] | -5110 | ||||
[math]\displaystyle{ ^4Hep \rightarrow pp\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=3n+k\pi^0, k\ge0 }[/math] | -5111 | ||||
[math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^- }[/math] | 6001 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-\pi^{0} }[/math] | 6101 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -6101 |
[math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^- }[/math] | 6002 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math] | 6102 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -6102 |
[math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^- }[/math] | 6003 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math] | 6103 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -6103 |
[math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-n }[/math] | 6104 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -6104 | ||
[math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-n }[/math] | 6105 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -6105 | ||
[math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^- }[/math] | 7001 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^-\pi^{0} }[/math] | 7101 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -7101 |
[math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^- }[/math] | 7002 | [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^-\pi^0 }[/math] | 7102 | [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] | -7102 |
[math]\displaystyle{ ^4Hep \rightarrow pppp\pi^+\pi^-\pi^-n }[/math] | 7103 | [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] | -7103 |
Dec 22 2023 som v tabulke prehodil poradie v topologii 600, na zelanie mozem zmenit, povodne bolo:
hyp 25-36 [math]\displaystyle{ {^3Hep\pi^+\pi^+\pi^-\pi^-n} }[/math] ma nove cislo 6104hyp 37-48 [math]\displaystyle{ {^3Hed\pi^+\pi^+\pi^-\pi^-} }[/math] ma nove cislo 6003
Rozmyslel som si a vratil som sa k povodnemu cislovaniu aj bez toho je tam neporiadok! Cize:
- hyp 25-36 [math]\displaystyle{ {^3Hep\pi^+\pi^+\pi^-\pi^-n} }[/math] ma cislo 6103
- hyp 37-48 [math]\displaystyle{ {^3Hed\pi^+\pi^+\pi^-\pi^-} }[/math] ma cislo 6004
Cervena farba znamena narusenie poradia hypotez (=kanalov reakcie) voci pisomnemu zoznamu.
interna tab
Por. | HYP od ÷ do | Kod reakcie | Nove | Kanal reakcie |
---|---|---|---|---|
1. | 1 ÷ 12 | 6001 | 6101 | -6101 | 1 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-| \pi^{0} | X^{0}, X^{0}= k\pi^{0}, k\ge2 }[/math] |
2. | 13 ÷ 24 | 6002 | 6102 | -6102 | 2 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-| \pi^{0} | X^{0}, X^{0}= k\pi^{0}, k\ge2 }[/math] |
3. | 125 ÷ 136 | 6104 | -6104 | 4 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-| n |X^{0}, X^{0}= n+k\pi^{0}, k\ge1 }[/math] |
4. | 37 ÷ 48 | 6003 | 6103 | -6103 | 3 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-| \pi^{0} | X^{0}, X^{0}= k\pi^{0}, k\ge2 }[/math] |
5 | 149 ÷ 152 | 6105 | -6105 | 5 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^{-} | n | X^{0}, X^{0}= n+k\pi^{0}, k\ge1 }[/math] |
Prechod ku kodom [math]\displaystyle{ ^{4}Hep }[/math] pri 13.5 GeV/c MINI format
NHYP | KOD | Kanal reakcie | |
1 ≤ NHYP ≤ 2 | 2001 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p }[/math] | |
101 ≤ NHYP ≤102 | 2101 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^{0} }[/math] | |
-102 ≤ NHYP ≤ -101 | -2101 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}pX^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
3 ≤ NHYP ≤ 4 | 2002 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d }[/math] | |
103 ≤ NHYP ≤ 104 | 2102 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^{0} }[/math] | |
-104 ≤ NHYP ≤ -103 | -2102 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}dX^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
105 ≤ NHYP ≤ 106 | 2103 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pn }[/math] | |
-106 ≤ NHYP ≤ -105 | -2103 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pX^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
107 ≤ NHYP ≤ 108 | 2104 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+n }[/math] | |
-108 ≤ NHYP ≤ -107 | -2104 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
-110 ≤ NHYP ≤ -109 | -2105 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math] |
NHYP | KOD | Kanal reakcie | |
1 ≤ NHYP ≤ 3 | 4001 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^- }[/math] | |
101 ≤ NHYP ≤ 103 | 4101 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-\pi^{0} }[/math] | |
-103 ≤ NHYP ≤ -101 | -4101 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
4 ≤ NHYP ≤ 9 | 4002 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^- }[/math] | |
104 ≤ NHYP ≤ 109 | 4102 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-\pi^{0} }[/math] | |
-109 ≤ NHYP ≤ -104 | -4102 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
10 ≤ NHYP ≤15 | 4003 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^- }[/math] | |
110 ≤ NHYP ≤115 | 4103 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^-\pi^{0} }[/math] | |
-115 ≤ NHYP ≤ -110 | -4103 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}d\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
116 ≤ NHYP ≤ 121 | 4104 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-n }[/math] | |
-121 ≤ NHYP ≤ 116 | -4104 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
122 ≤ NHYP ≤ 124 | 4105 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^{-}n }[/math] | |
-124 ≤ NHYP ≤ -122 | -4105 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^{-}X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
-127 ≤ NHYP ≤ -125 | -4106 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math] |
NHYP | KOD | Kanal reakcie | |
1 ≤ NHYP ≤ 3 | 3001 | [math]\displaystyle{ ^4Hep \rightarrow tpp }[/math] | |
101 NHYP ≤103 | 3101 | [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^{0} }[/math] | |
-103 NHYP ≤ -101 | -3101 | [math]\displaystyle{ ^4Hep\rightarrow tppX^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
4 ≤ NHYP ≤ 6 | 3002 | [math]\displaystyle{ ^4Hep \rightarrow ddp }[/math] | |
104 ≤ NHYP ≤ 106 | 3102 | [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^{0} }[/math] | |
-106 ≤ NHYP ≤ -104 | -3102 | [math]\displaystyle{ ^4Hep \rightarrow ddpX^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
7 ≤ NHYP ≤ 12 | 3003 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+ }[/math] | |
107≤ NHYP ≤ 112 | 3103 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^{0} }[/math] | |
-112 ≤ NHYP ≤ -107 | -3103 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
113 ≤ NHYP ≤ 115 | 3104 | [math]\displaystyle{ ^4Hep \rightarrow dppn }[/math] | |
-115 ≤ NHYP ≤ -113 | -3104 | [math]\displaystyle{ ^4Hep \rightarrow dppX^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
116 ≤ NHYP ≤ 121 | 3105 | [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+n }[/math] | |
-121 ≤ NHYP ≤ -116 | -3105 | [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
122 ≤ NHYP ≤ 124 | 3106 | [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+n }[/math] | |
-124 ≤ NHYP ≤ -122 | -3106 | [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
NHYP = -125 | -3107 | [math]\displaystyle{ ^4Hep \rightarrow pppX^{0} }[/math] | [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math] |
-128 ≤ NHYP ≤ -126 | -3108 | [math]\displaystyle{ ^4Hep \rightarrow t\pi^+\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math] |
-134 ≤ NHYP ≤ -129 | -3109 | [math]\displaystyle{ ^4Hep \rightarrow dp\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math] |
-137 ≤ NHYP ≤ -135 | -3110 | [math]\displaystyle{ ^4Hep \rightarrow d\pi^+\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=3n+k\pi^{0}, k\ge0 }[/math] |
-140 ≤ NHYP ≤ -138 | -3111 | [math]\displaystyle{ ^4Hep \rightarrow pp\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=3n+k\pi^{0}, k\ge0 }[/math] |
-143 ≤ NHYP ≤ -141 | -3112 | [math]\displaystyle{ ^4Hep \rightarrow p\pi^+\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=4n+k\pi^{0}, k\ge0 }[/math] |
NHYP = -144 | -3113 | [math]\displaystyle{ ^4Hep \rightarrow \pi^+\pi^+\pi^+X^{0} }[/math] | [math]\displaystyle{ X^0=5n+k\pi^{0}, k\ge0 }[/math] |
NHYP | KOD | Kanal reakcie | |
1 ≤ NHYP ≤ 12 | 5001 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^- }[/math] | |
101 ≤ NHYP ≤ 112 | 5101 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-\pi^{0} }[/math] | |
-112 ≤ NHYP ≤ -101 | -5101 | [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
13 ≤ NHYP ≤ 24 | 5002 | [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^- }[/math] | |
113 ≤ NHYP ≤ 124 | 5102 | [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-\pi^{0} }[/math] | |
-124 ≤ NHYP ≤ -113 | -5102 | [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-X^{0} }[/math] | |
25 ≤ NHYP ≤ 36 | 5003 | [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^- }[/math] | |
125 ≤ NHYP ≤136 | 5103 | [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-\pi^{0} }[/math] | |
-136 ≤ NHYP ≤ -125 | -5103 | [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
37 ≤ NHYP ≤ 40 | 5004 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^- }[/math] | |
137 ≤ NHYP ≤ 140 | 5104 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-\pi^{0} }[/math] | |
-140 ≤ NHYP ≤ -137 | -5104 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
141 ≤ NHYP ≤ 152 | 5105 | [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-n }[/math] | |
-152 ≤ NHYP ≤-141 | -5105 | [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
153 ≤ NHYP ≤ 158 | 5106 | [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-n }[/math] | |
-158 ≤ NHYP ≤ -153 | -5106 | [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
159 ≤ NHYP ≤ 170 | 5107 | [math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-n }[/math] | |
-170 ≤ NHYP ≤ -159 | -5107 | [math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
NHYP = 171 | 5108 | [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-n }[/math] | |
NHYP = -171 | -5108 | [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
-183 ≤ NHYP ≤ -172 | -5109 | [math]\displaystyle{ ^4Hep \rightarrow dp\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math] |
-187 ≤ NHYP ≤ -184 | -5110 | [math]\displaystyle{ ^4Hep \rightarrow ppp\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math] |
-193 ≤ NHYP ≤ -188 | -5111 | [math]\displaystyle{ ^4Hep \rightarrow pp\pi^+\pi^+\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=3n+k\pi^{0}, k\ge0 }[/math] |
NHYP | KOD | Kanal reakcie | |
1 ≤ NHYP ≤ 12 | 6001 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^- }[/math] | |
101 ≤ NHYP ≤ 112 | 6101 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-\pi^{0} }[/math] | |
-112 ≤ NHYP ≤-101 | -6101 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
13 ≤ NHYP ≤ 24 | 6002 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^- }[/math] | |
113 ≤ NHYP ≤ 124 | 6102 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math] | |
-124 ≤ NHYP ≤ -113 | -6102 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
37 ≤ NHYP ≤ 48 | 6003 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^- }[/math] | |
137 ≤ NHYP ≤ 148 | 6103 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math] | |
-148 ≤ NHYP ≤ -137 | -6103 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
125 ≤ NHYP ≤ 136 | 6104 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-n }[/math] | |
-136 ≤ NHYP ≤-125 | -6104 | [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
149 ≤ NHYP ≤ 152 | 6105 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-n }[/math] | |
-152 ≤ NHYP ≤ -149 | -6105 | [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |
NHYP | KOD | Kanal reakcie | |
1 ≤ NHYP ≤ 20 | 7001 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^- }[/math] | |
101 ≤ NHYP ≤ 120 | 7101 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^-\pi^{0} }[/math] | |
-120 ≤ NHYP ≤ -101 | -7101 | [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
NHYP = 21 | 7002 | [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^- }[/math] | |
NHYP=121 | 7102 | [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^-\pi^{0} }[/math] | |
NHYP = -121 | -7102 | [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math] |
122 ≤ NHYP ≤ 126 | 7103 | [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^+\pi^-\pi^-n }[/math] | |
-126 ≤ NHYP ≤ -122 | -7103 | [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^+\pi^-\pi^-X^{0} }[/math] | [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math] |