Jump to content

Dubna1mHBC he4p13

From MukeWiki

Ožiarenie 1m HBC zväzkami jadier 4He pri hybnosti zväzku 13,5 GeV/c

 DODAT POPIS STUKTURY DST PRE FULL A MINI FORMAT



Expozície číslo: 42, 43 hybnosť zväzku 4He 13,5 GeV/c.Formaty DST plný (FULL) format a MINI format.

Vysvetlenie rozdielu medzi hypotezou a kanalom reakcie

Hypoteza pod danym cislom, ako je uvedena v zozname, moze zahrnut — v dosledku zakona zachovania elektrickeho naboja a baryonoveho cisla — niekolko kanalov reakcie :

  1. kanal bez neutralnej castice (4C-, 3C-, 2C-fit)
  2. kanal s 1 (jednou) neutralnou casticou (1C-fit)
  3. kanal s 2 (dvoma) a viac neutralnymi casticami (0C-fit tiez nazyvany ako NOFIT).

Plný format (FULL) binárny file

Tabuľka expozicií
File Počet prípadov Expozícia
he13.dvo 31145 42, 43
Total 31145 all


Štruktúra zápisu

  • Nbytes, Nwords, b[0], b[1], …, b[Nwords-1], Nbytes,

kde

  • Nbytes je štvorbyteový integer a Nbytes = 4 * (Nwords + 1) dlžka zápisu v štvorbyteových slovách, samotné slová Nbytes sa do dl´žky nezapočítavajú,
  • Nwords je štvorbyteový integer a vyjadruje dlžku poľa
  • b[0], b[1], … b[Nwords-1], samotné slovo Nwords sa do dl´žky nezapočítavá,
  • b[0], b[1], … b[Nwords-1] sú štvorbyteový integer alebo float,

** b[0], b[1] sú integer (pre lab Dubna, ostatné float) ** b[2], … b[Nwords-1] sú float

Čítanie: read Nbytes, Nwords ; read b[0], b[1], …, b[Nwords-1] ; read Nbytes

Podrobný popis štruktúry neskoršie.

Dĺžka hlavičky = 28; [0], …, [27]. Začiatok oblasti dráh = pri [29], length = 20/track, počet dráh = (SCANTOP/100 + 2), posledne slovo je dlzka drahy.

Výsledky

Vylepšenia (voči 8.6 GeV/c):

  • Hmotnosť pi- mezónu je ZÁPORNÁ
  • NOFIT ND je nulový
  • NOFIT prob je nenulová iba pre LAB=2
  • LAB = 1, 2, 3, 4, 5, 6
  • vertex VX, VY, VZ OK
  • prve dve slova su realne (float) obsahuju ROLL*10+meas/order, FRAME*10+order/meas, neviem si zistit kde je meas a kde order

Niektoré anomálie:

  • Oblasť dráh obsahuje 20 slov/dráhu, posledné slovo je dĺžka dráhy (u primárky sa dobre identifikuje je záporné a má niekoľko desiatok cm). Slovo 19 a 20 asi budu DELTA SQ. FROM BEAM, DELTA SQ. FROM TARGET.
  • Ak sú dve hypotézy, tak aj medzi nimi sú nuly. Za poslednou hypo tento chvost neide. Vzdialenosť medzi oblastmi dráh (ak sú 2 hypo) v zavislosti od poctu sekundarnych nabitych castc, je nasledovna:
//               ?  ?  2pr  3pr  4pr  5pr  6pr  7pr 
 int DELTA[] = { 0, 0, 100, 120, 160, 210, 270, 360};



Redukovaný format (MINI, MIKRO) binárny file

Redukovaný formát štatistika
File Number of hypo Exposition
he13p2.dvo 10153 42, 43
he13p3.dvo 13855 42, 43
he13p4.dvo 2194 42, 43
he13p5.dvo 4671 42, 43
he13p6.dvo 55 42, 43
he13p7.dvo 213 42, 43
Total 31141 all

Štruktúra zápisu

  • Nbytes, Nwords, b[0], b[1], …, b[Nwords-1], Nbytes,

kde

  • Nbytes je štvorbyteový integer a Nbytes = 4 * (Nwords + 1) dlžka zápisu v štvorbyteových slovách, samotné slová Nbytes sa do dl´žky nezapočítavajú,
  • Nwords je štvorbyteový integer a vyjadruje dlžku poľa, b[0], b[1], … b[Nwords-1], samotné slovo Nwords sa do dl´žky nezapočítavá,
  • b[0], b[1] sú integer (pre lab Dubna, pre ostatne float )
  • b[2], … b[Nwords-1] sú float

Čítanie: read Nbytes, Nwords ; read b[0], b[1], …, b[Nwords-1] ; read Nbytes

Podrobný popis štruktúry neskoršie. Začiatok oblasti dráh = @ 5, length = 6/track, scanning topology nie je na DST, počet dráh sa dá určiť takto: (Nwords – dĺžkahlavičky)/length/počethypotéz.

Výsledky

Niektoré anomálie:

  • beam py ≠ 0 (54 events), pz ≠ 0 (52 events)for Lab=6
  • oblast beam 0<px< 4 (54 events) pre Lab = 6, pre ostatne eventy 11<px<16 pre vsetky lab

FULL DST nevykazuje anomalie v hybnosti zloziek zvazku a obsahuje o 54 eventov menej ako MINI DST. Kde sa nabralo tych 54 anomalnych eventov na MINI DST? Neviem.

Grind checking kriteria [math]\displaystyle{ ^{4}Hep }[/math] pri 13.5 GeV/c

  1. Pravdepodobnost P:
    • 1C fit hypotez P > 0.05
    • 2C fit hypotez P > 0.02
    • 3C fit hypotez P > 0.005
    • 4C fit hypotez P > 0.001
  2. Moduly laboratornych hybnosti p sekundarnych nabitych castic:
    • [math]\displaystyle{ nabite \hspace{0.2cm} \pi \hspace{0.2cm} mezony \hspace{0.2cm} p_{\pi} \lt 2.5 GeV/c }[/math]
    • [math]\displaystyle{ proton \hspace{0.2cm} p_{p} \lt 5.5 GeV/c }[/math]
    • [math]\displaystyle{ deuteron \hspace{0.2cm} p_{d} \lt 8.7 GeV/c }[/math]
    • [math]\displaystyle{ triton \hspace{0.2cm} 8.7 \lt p_{t} \lt 11.9 GeV/c }[/math]
    • [math]\displaystyle{ ^{3}He \hspace{0.2cm} p_{^{3}He} \lt 11.9 GeV/c }[/math]
    • [math]\displaystyle{ ^{4}He \hspace{0.2cm} p_{^{4}He} \gt 11.9 GeV/c }[/math]
  3. Kvadrat chybajucej hmotnosti pre 1C fit hypotez [math]\displaystyle{ MM^{2} }[/math]:
    • s [math]\displaystyle{ \pi^{0} }[/math] mezonom [math]\displaystyle{ -0.2 \lt MM^{2}_{\pi^{0}} \lt 0.16 GeV^{2} }[/math]
    • s neutronom [math]\displaystyle{ 0.4 \lt MM^{2}_{n} \lt 1.2 GeV^{2} }[/math]
  4. Kvadrat chybajucej hmotnosti s neurcitostou pre NOFIT hypotez [math]\displaystyle{ MM^{2}+3\sigma_{MM^{2}}: }[/math]
    • s [math]\displaystyle{ X^{0}= k \pi^{0}, pre \hspace{0.2cm}k \gt 1, MM^{2}+3\sigma_{MM^{2}} \gt 0.1 GeV^{2} }[/math]
    • s [math]\displaystyle{ X^{0}= k \hspace{0.1cm} neutronov\hspace{0.2cm}(moze\hspace{0.1cm} obsahovat \hspace{0.1cm}\pi^{0}\hspace{0.1cm} mezon/y): }[/math]
      • [math]\displaystyle{ pre \hspace{0.2cm}k = 1, MM^{2}+3\sigma_{MM^{2}} \gt 1.17 GeV^{2} }[/math]
      • [math]\displaystyle{ pre \hspace{0.2cm}k = 2, MM^{2}+3\sigma_{MM^{2}} \gt 3.53 GeV^{2} }[/math]
      • [math]\displaystyle{ pre \hspace{0.2cm}k = 3, MM^{2}+3\sigma_{MM^{2}} \gt 7.94 GeV^{2} }[/math]
      • [math]\displaystyle{ pre \hspace{0.2cm}k = 4, MM^{2}+3\sigma_{MM^{2}} \gt 14.12 GeV^{2} }[/math]


  • Pre FULL DST mozno pouzit vsetky 4 kriteria, ale pre bezne analyzy stacia 1,2,3.
  • MINI DST umoznuje pouzit kriterium 2. Chybajuce hmotnosti sa daju dopocitat, ale bez neurcitosti.

Navrh kodovania vystupnych kanalov reakcii

Navrh kodovania hypotez pre expozicie 4Hep pri 13.5 GeV/c exp. 42 & 43
No neutral One neutral Two or more neutrals
Kanal reakcie Kod Kanal reakcie Kod Kanal reakcie [math]\displaystyle{ X^0 }[/math] Kod
[math]\displaystyle{ ^4Hep \rightarrow {^4He}p }[/math] 2001 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^{0} }[/math] 2101 [math]\displaystyle{ ^4Hep \rightarrow {^4He}pX^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -2101
[math]\displaystyle{ ^4Hep \rightarrow {^3He}d }[/math] 2002 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^{0} }[/math] 2102 [math]\displaystyle{ ^4Hep \rightarrow {^3He}dX^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -2102
[math]\displaystyle{ ^4Hep \rightarrow {^3He}pn }[/math] 2103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pX^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -2103
[math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+n }[/math] 2104 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -2104
[math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -2105
[math]\displaystyle{ ^4Hep \rightarrow tpp }[/math] 3001 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^{0} }[/math] 3101 [math]\displaystyle{ ^4Hep \rightarrow tppX^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -3101
[math]\displaystyle{ ^4Hep \rightarrow ddp }[/math] 3002 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^{0} }[/math] 3102 [math]\displaystyle{ ^4Hep \rightarrow ddpX^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -3102
[math]\displaystyle{ ^4Hep \rightarrow td\pi^+ }[/math] 3003 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^{0} }[/math] 3103 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -3103
[math]\displaystyle{ ^4Hep \rightarrow dppn }[/math] 3104 [math]\displaystyle{ ^4Hep \rightarrow dppX^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -3104
[math]\displaystyle{ ^4Hep \rightarrow tp\pi^+n }[/math] 3105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -3105
[math]\displaystyle{ ^4Hep \rightarrow dd\pi^+n }[/math] 3106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -3106
[math]\displaystyle{ ^4Hep \rightarrow pppX^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -3107
[math]\displaystyle{ ^4Hep \rightarrow t\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -3108
[math]\displaystyle{ ^4Hep \rightarrow dp\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -3109
[math]\displaystyle{ ^4Hep \rightarrow d\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=3n+k\pi^0, k\ge0 }[/math] -3110
[math]\displaystyle{ ^4Hep \rightarrow pp\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=3n+k\pi^0, k\ge0 }[/math] -3111
[math]\displaystyle{ ^4Hep \rightarrow p\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=4n+k\pi^0, k\ge0 }[/math] -3112
[math]\displaystyle{ ^4Hep \rightarrow \pi^+\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^{0}=5n+k\pi^0, k\ge0 }[/math] -3113
[math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^- }[/math] 4001 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-\pi^{0} }[/math] 4101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -4101
[math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^- }[/math] 4002 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-\pi^{0} }[/math] 4102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -4102
[math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^- }[/math] 4003 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^-\pi^{0} }[/math] 4103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -4103
[math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-n }[/math] 4104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -4104
[math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^-n }[/math] 4105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -4105
[math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -4106
[math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^- }[/math] 5001 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-\pi^{0} }[/math] 5101 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -5101
[math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^- }[/math] 5002 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-\pi^{0} }[/math] 5102 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -5102
[math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^- }[/math] 5003 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-\pi^{0} }[/math] 5103 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -5103
[math]\displaystyle{ ^4Hep \rightarrow dppp\pi^- }[/math] 5004 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-\pi^{0} }[/math] 5104 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -5104
[math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-n }[/math] 5105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -5105
[math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-n }[/math] 5106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -5106
[math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-n }[/math] 5107 [math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -5107
[math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-n }[/math] 5108 [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -5108
[math]\displaystyle{ ^4Hep \rightarrow dp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -5109
[math]\displaystyle{ ^4Hep \rightarrow ppp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=2n+k\pi^0, k\ge0 }[/math] -5110
[math]\displaystyle{ ^4Hep \rightarrow pp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=3n+k\pi^0, k\ge0 }[/math] -5111
[math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^- }[/math] 6001 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-\pi^{0} }[/math] 6101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -6101
[math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^- }[/math] 6002 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math] 6102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -6102
[math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^- }[/math] 6003 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math] 6103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -6103
[math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-n }[/math] 6104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -6104
[math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-n }[/math] 6105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -6105
[math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^- }[/math] 7001 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^-\pi^{0} }[/math] 7101 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -7101
[math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^- }[/math] 7002 [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^-\pi^0 }[/math] 7102 [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=k\pi^0, k\ge2 }[/math] -7102
[math]\displaystyle{ ^4Hep \rightarrow pppp\pi^+\pi^-\pi^-n }[/math] 7103 [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^{0}=n+k\pi^0, k\ge1 }[/math] -7103

Dec 22 2023 som v tabulke prehodil poradie v topologii 600, na zelanie mozem zmenit, povodne bolo:

  1. hyp 25-36 [math]\displaystyle{ {^3Hep\pi^+\pi^+\pi^-\pi^-n} }[/math] ma nove cislo 6104
  2. hyp 37-48 [math]\displaystyle{ {^3Hed\pi^+\pi^+\pi^-\pi^-} }[/math] ma nove cislo 6003

Rozmyslel som si a vratil som sa k povodnemu cislovaniu aj bez toho je tam neporiadok! Cize:

  1. hyp 25-36 [math]\displaystyle{ {^3Hep\pi^+\pi^+\pi^-\pi^-n} }[/math] ma cislo 6103
  2. hyp 37-48 [math]\displaystyle{ {^3Hed\pi^+\pi^+\pi^-\pi^-} }[/math] ma cislo 6004

Cervena farba znamena narusenie poradia hypotez (=kanalov reakcie) voci pisomnemu zoznamu.

interna tab

Poznámka k 6-lúčovým 4Hep pri 13.5 GeV/c exp. 42 & 43, pre interne pouzivanie
Por. HYP od ÷ do Kod reakcie Nove Kanal reakcie
1. 1 ÷ 12 6001 | 6101 | -6101 1 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-| \pi^{0} | X^{0}, X^{0}= k\pi^{0}, k\ge2 }[/math]
2. 13 ÷ 24 6002 | 6102 | -6102 2 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-| \pi^{0} | X^{0}, X^{0}= k\pi^{0}, k\ge2 }[/math]
3. 125 ÷ 136 6104 | -6104 4 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-| n |X^{0}, X^{0}= n+k\pi^{0}, k\ge1 }[/math]
4. 37 ÷ 48 6003 | 6103 | -6103 3 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-| \pi^{0} | X^{0}, X^{0}= k\pi^{0}, k\ge2 }[/math]
5 149 ÷ 152 6105 | -6105 5 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^{-} | n | X^{0}, X^{0}= n+k\pi^{0}, k\ge1 }[/math]

Prechod ku kodom [math]\displaystyle{ ^{4}Hep }[/math] pri 13.5 GeV/c MINI format

2 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 2 2001 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p }[/math]
101 ≤ NHYP ≤102 2101 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^{0} }[/math]
-102 ≤ NHYP ≤ -101 -2101 [math]\displaystyle{ ^4Hep \rightarrow {^4He}pX^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
3 ≤ NHYP ≤ 4 2002 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d }[/math]
103 ≤ NHYP ≤ 104 2102 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^{0} }[/math]
-104 ≤ NHYP ≤ -103 -2102 [math]\displaystyle{ ^4Hep \rightarrow {^3He}dX^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
105 ≤ NHYP ≤ 106 2103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pn }[/math]
-106 ≤ NHYP ≤ -105 -2103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pX^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
107 ≤ NHYP ≤ 108 2104 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+n }[/math]
-108 ≤ NHYP ≤ -107 -2104 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
-110 ≤ NHYP ≤ -109 -2105 [math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
4 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 3 4001 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^- }[/math]
101 ≤ NHYP ≤ 103 4101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-\pi^{0} }[/math]
-103 ≤ NHYP ≤ -101 -4101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
4 ≤ NHYP ≤ 9 4002 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^- }[/math]
104 ≤ NHYP ≤ 109 4102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-\pi^{0} }[/math]
-109 ≤ NHYP ≤ -104 -4102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
10 ≤ NHYP ≤15 4003 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^- }[/math]
110 ≤ NHYP ≤115 4103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^-\pi^{0} }[/math]
-115 ≤ NHYP ≤ -110 -4103 [math]\displaystyle{ ^4Hep \rightarrow {^4He}d\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
116 ≤ NHYP ≤ 121 4104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-n }[/math]
-121 ≤ NHYP ≤ 116 -4104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
122 ≤ NHYP ≤ 124 4105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^{-}n }[/math]
-124 ≤ NHYP ≤ -122 -4105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^{-}X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
-127 ≤ NHYP ≤ -125 -4106 [math]\displaystyle{ ^4Hep \rightarrow {^3He}\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
3 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 3 3001 [math]\displaystyle{ ^4Hep \rightarrow tpp }[/math]
101 NHYP ≤103 3101 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^{0} }[/math]
-103 NHYP ≤ -101 -3101 [math]\displaystyle{ ^4Hep\rightarrow tppX^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
4 ≤ NHYP ≤ 6 3002 [math]\displaystyle{ ^4Hep \rightarrow ddp }[/math]
104 ≤ NHYP ≤ 106 3102 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^{0} }[/math]
-106 ≤ NHYP ≤ -104 -3102 [math]\displaystyle{ ^4Hep \rightarrow ddpX^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
7 ≤ NHYP ≤ 12 3003 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+ }[/math]
107≤ NHYP ≤ 112 3103 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^{0} }[/math]
-112 ≤ NHYP ≤ -107 -3103 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
113 ≤ NHYP ≤ 115 3104 [math]\displaystyle{ ^4Hep \rightarrow dppn }[/math]
-115 ≤ NHYP ≤ -113 -3104 [math]\displaystyle{ ^4Hep \rightarrow dppX^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
116 ≤ NHYP ≤ 121 3105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+n }[/math]
-121 ≤ NHYP ≤ -116 -3105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
122 ≤ NHYP ≤ 124 3106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+n }[/math]
-124 ≤ NHYP ≤ -122 -3106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
NHYP = -125 -3107 [math]\displaystyle{ ^4Hep \rightarrow pppX^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-128 ≤ NHYP ≤ -126 -3108 [math]\displaystyle{ ^4Hep \rightarrow t\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-134 ≤ NHYP ≤ -129 -3109 [math]\displaystyle{ ^4Hep \rightarrow dp\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-137 ≤ NHYP ≤ -135 -3110 [math]\displaystyle{ ^4Hep \rightarrow d\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=3n+k\pi^{0}, k\ge0 }[/math]
-140 ≤ NHYP ≤ -138 -3111 [math]\displaystyle{ ^4Hep \rightarrow pp\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=3n+k\pi^{0}, k\ge0 }[/math]
-143 ≤ NHYP ≤ -141 -3112 [math]\displaystyle{ ^4Hep \rightarrow p\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=4n+k\pi^{0}, k\ge0 }[/math]
NHYP = -144 -3113 [math]\displaystyle{ ^4Hep \rightarrow \pi^+\pi^+\pi^+X^{0} }[/math] [math]\displaystyle{ X^0=5n+k\pi^{0}, k\ge0 }[/math]
5 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 12 5001 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^- }[/math]
101 ≤ NHYP ≤ 112 5101 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-\pi^{0} }[/math]
-112 ≤ NHYP ≤ -101 -5101 [math]\displaystyle{ ^4Hep \rightarrow td\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
13 ≤ NHYP ≤ 24 5002 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^- }[/math]
113 ≤ NHYP ≤ 124 5102 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-\pi^{0} }[/math]
-124 ≤ NHYP ≤ -113 -5102 [math]\displaystyle{ ^4Hep \rightarrow tpp\pi^+\pi^-X^{0} }[/math]
25 ≤ NHYP ≤ 36 5003 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^- }[/math]
125 ≤ NHYP ≤136 5103 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-\pi^{0} }[/math]
-136 ≤ NHYP ≤ -125 -5103 [math]\displaystyle{ ^4Hep \rightarrow ddp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
37 ≤ NHYP ≤ 40 5004 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^- }[/math]
137 ≤ NHYP ≤ 140 5104 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-\pi^{0} }[/math]
-140 ≤ NHYP ≤ -137 -5104 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
141 ≤ NHYP ≤ 152 5105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-n }[/math]
-152 ≤ NHYP ≤-141 -5105 [math]\displaystyle{ ^4Hep \rightarrow tp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
153 ≤ NHYP ≤ 158 5106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-n }[/math]
-158 ≤ NHYP ≤ -153 -5106 [math]\displaystyle{ ^4Hep \rightarrow dd\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
159 ≤ NHYP ≤ 170 5107 [math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-n }[/math]
-170 ≤ NHYP ≤ -159 -5107 [math]\displaystyle{ ^4Hep \rightarrow dpp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
NHYP = 171 5108 [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-n }[/math]
NHYP = -171 -5108 [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
-183 ≤ NHYP ≤ -172 -5109 [math]\displaystyle{ ^4Hep \rightarrow dp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-187 ≤ NHYP ≤ -184 -5110 [math]\displaystyle{ ^4Hep \rightarrow ppp\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=2n+k\pi^{0}, k\ge0 }[/math]
-193 ≤ NHYP ≤ -188 -5111 [math]\displaystyle{ ^4Hep \rightarrow pp\pi^+\pi^+\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=3n+k\pi^{0}, k\ge0 }[/math]
6 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 12 6001 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^- }[/math]
101 ≤ NHYP ≤ 112 6101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-\pi^{0} }[/math]
-112 ≤ NHYP ≤-101 -6101 [math]\displaystyle{ ^4Hep \rightarrow {^3He}pp\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
13 ≤ NHYP ≤ 24 6002 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^- }[/math]
113 ≤ NHYP ≤ 124 6102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math]
-124 ≤ NHYP ≤ -113 -6102 [math]\displaystyle{ ^4Hep \rightarrow {^4He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
37 ≤ NHYP ≤ 48 6003 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^- }[/math]
137 ≤ NHYP ≤ 148 6103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-\pi^{0} }[/math]
-148 ≤ NHYP ≤ -137 -6103 [math]\displaystyle{ ^4Hep \rightarrow {^3He}d\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
125 ≤ NHYP ≤ 136 6104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-n }[/math]
-136 ≤ NHYP ≤-125 -6104 [math]\displaystyle{ ^4Hep \rightarrow {^3He}p\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
149 ≤ NHYP ≤ 152 6105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-n }[/math]
-152 ≤ NHYP ≤ -149 -6105 [math]\displaystyle{ ^4Hep \rightarrow {^4He}\pi^+\pi^+\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]
7 prongs
NHYP KOD Kanal reakcie
1 ≤ NHYP ≤ 20 7001 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^- }[/math]
101 ≤ NHYP ≤ 120 7101 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^-\pi^{0} }[/math]
-120 ≤ NHYP ≤ -101 -7101 [math]\displaystyle{ ^4Hep \rightarrow dppp\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
NHYP = 21 7002 [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^- }[/math]
NHYP=121 7102 [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^-\pi^{0} }[/math]
NHYP = -121 -7102 [math]\displaystyle{ ^4Hep \rightarrow ppppp\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=k\pi^{0}, k\ge2 }[/math]
122 ≤ NHYP ≤ 126 7103 [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^+\pi^-\pi^-n }[/math]
-126 ≤ NHYP ≤ -122 -7103 [math]\displaystyle{ ^4Hep \rightarrow pppp\pi^+\pi^-\pi^-X^{0} }[/math] [math]\displaystyle{ X^0=n+k\pi^{0}, k\ge1 }[/math]